Analysis of Angiogenesis Biomarkers for Ramucirumab (RAM) Efficacy in Patients with Metastatic Colorectal Cancer (mCRC) from RAISE, a Global, Randomized, Double-blind, Phase 3 Study

Josep Tabernero¹; Rebecca R. Hozak²; Takayuki Yoshino³; Allen Lee Cohn⁴; Rodka Obermannova⁵; Gyorgy Bodoky⁶; Rocio Garcia-Carbonero⁷; Tudor-Eliade Ciuleanu⁸; David C. Portnoy⁹; Kei Muro¹⁰; Haojun Ouyang¹¹; Symantha Ann Melemed²; David Ferry¹²; Federico Nasroulah¹³; Eric Van Cutsem¹⁴; Sebastian Stintzing (presenter only)¹⁵

¹Vall d'Hebron University Hospital and Institute of Oncology (VHIO), CIBERONC, Universitat Autònoma de Barcelona, Barcelona, Barcelona, Spain; ²Eli Lilly and Comprehensive Cancer Center/US Oncology, Denver, CO, USA; ⁵Department of Comprehensive Cancer Center, Masaryk Memorial Cancer Institute, Brno, Czech Republic; ⁶Szent László Hospital, Budapest, Hungary; ⁷Hospital Universitario 12 de Octubre, CNIO, CIBERONC, Universidad Complutense, Madrid, Spain; ⁸Prof. Dr. I. Chiricuţă Institute of Oncology, Cluj-Napoca, Romania; ⁹West Clinic, Memphis, TN, USA; ¹²Eli Lilly and Company, Indianapolis, IN, USA; ¹⁴Eli Lilly and Company, Indianapolis, IN, USA; Bridgewater, NJ, USA; ¹³Eli Lilly and Company, Argentina; ¹⁴University Hospital Gasthuisberg, Leuven, Belgium; ¹⁵Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Germany; presenting on behalf of the authors

BACKGROUND

- Colorectal carcinoma (CRC) is the third leading cause of cancer and cancer deaths worldwide^{1,2}
- Metastatic colorectal carcinoma (mCRC) develops in approximately half of patients diagnosed with this disease³
- The poor prognosis of mCRC drives ongoing efforts to find treatments that improve patients' outcomes⁴
- Antiangiogenic treatments are proven to improve mCRC patients' outcomes; however, there are currently no predictive biomarkers to guide patient selection for therapies targeting angiogenesis
- Ramucirumab (RAM) is a human IgG1 monoclonal antibody that specifically binds to the extracellular domain of vascular endothelial growth factor (VEGF) receptor (VEGFR)-2 with high affinity, preventing binding of agonist ligands VEGF-A, VEGF-C, and VEGF-D, as well as VEGFR-2 activation⁵
- The RAISE trial (NCT01183780) demonstrated a statistically significant survival benefit for patients treated with RAM+FOLFIRI vs. placebo+FOLFIRI with median overall survival (OS) of 13.3 months for the RAM group vs. 11.7 months for the placebo group (hazard ratio [HR] 0.844; 95% confidence interval [CI] 0.730-0.976; log-rank p=.0219)⁶
- An extensive RAISE biomarker program assessed the association of multiple candidate biomarkers with RAM efficacy outcomes

METHODS

- The RAISE trial⁶ enrolled mCRC patients with:
- Known *KRAS* exon 2 mutation status (mutant or wild type) • Eastern Cooperative Oncology Group Performance Status (ECOG PS)
- 0 or 1
- Disease progression during or within 6 months of last dose of first-line combination therapy with bevacizumab, oxaliplatin, and fluoropyrimidine for metastatic disease
- Patients were randomized 1:1 to receive either 8 mg/kg RAM or placebo as a 60-minute intravenous infusion, followed by the FOLFIRI regimen⁶
- Plasma and tumor tissue collection were mandatory
- Analyses were performed to assess correlations of baseline individual marker levels with clinical outcomes
- Plasma samples were collected from whole blood prior to cycle 1; VEGF-C, VEGF-D, soluble VEGFR-1 (sVEGFR-1), sVEGFR-2, and sVEGFR-3 were assessed by exploratory, individual, proprietary Eli Lilly and Company–developed dual-monoclonal sandwich immunoassays (Version 1 for each)
- VEGF-A was not assessed because blood samples were collected in heparin tubes, and it has been determined that heparin interferes with bioanalytical assay for VEGF-A, such that reliable results cannot be obtained
- Archived tumor samples were submitted to a central laboratory for VEGFR-2 immunohistochemistry assay⁷
- An adaptive analysis design⁸ was used in which the population was randomly and prospectively split (after initial randomization) into a marker exploratory (ME) set and a marker confirmatory (MC) set in 1:2 ratio
- This allowed broad exploration of markers in the ME set and prespecification for any noteworthy findings to be confirmed independently in the MC set
- Stratification was applied to balance the ME and MC sets according to treatment assignment and the 3 study stratification factors: geographic region, KRAS exon 2 mutation status, and time to disease progression on first-line treatment
- Kaplan-Meier estimates and 95% CIs were used to analyze OS and progression-free survival (PFS); Cox regression analyses were performed for each marker with stratification factors adjusted
- A subpopulation treatment effect pattern plot (STEPP) was used to evaluate the relationship of each marker's levels with efficacy outcomes⁹; in generating STEPP, treatment effect was assessed in subsets of patients who had similar biomarker levels, with subsets together spanning the full range of that marker's values (sliding window approach)

RESULTS

Table 1. Summary of Biomarker Levels

Marker	Total
sVEGFR-1	
Ν	889
Median (pg/mL)	258
Interquartile range (pg/mL)	203-523
sVEGFR-2	
Ν	880
Median (pg/mL)	21,162
Interquartile range (pg/mL)	17,791-24,483
sVEGFR-3	
Ν	889
Median (pg/mL)	95,057
Interquartile range (pg/mL)	76,208-120,223
VEGF-C	
Ν	885
Median (pg/mL)	81,150
Interquartile range (pg/mL)	68,380-102,010
VEGF-D	
Ν	884
Median (pg/mL)	135
Interquartile range (pg/mL)	91-208
VEGFR-2 (IHC H-Score) neoplastic vessels	
Ν	869
Median (pg/mL)	50
Interquartile range (pg/mL)	15-92

Table 2. Baseline Patient Characteristics by VEGF-D Levels (ME+MC Population)

VEGF-D High	VEGF-D High ≥115 pg/mL		VEGF-D Low <115 pg/mL		
RAM+ FOLFIRI (n=270) n (%)	Placebo+ FOLFIRI (n=266) n (%)	RAM+ FOLFIRI (n=176) n (%)	Placebo+ FOLFIRI (n=172) n (%)		
	、	<u>_</u>			
111 (41)	109 (41)	64 (36)	70 (41)		
59 (22)	53 (20)	31 (18)	42 (24)		
137 (51)	162 (61)	100 (57)	110 (64)		
133 (49)	104 (39)	76 (43)	62 (36)		
n					
67 (25)	61 (23)	33 (19)	28 (16)		
203 (75)	205 (77)	143 (81)	144 (84)		
8 (3) 72 (27) 189 (70)	9 (3) 70 (26) 185 (70)	6 (3) 38 (22) 132 (75)	5 (3) 30 (17) 134 (78)		
1 (0.4)	2(1)		3 (2)		
143 (53) 127 (47)	126 (47) 140 (53)	88 (50) 87 (49)	93 (54) 79 (46)		
		1 (1)			
after first line					
63 (23) 207 (77)	71 (27) 195 (73)	43 (24) 133 (76)	36 (21) 136 (79)		
137 (51) 133 (49)	119 (45) 147 (55)	89 (51) 87 (49)	86 (50) 86 (50)		
	VEGF-D High 2 RAM+ FOLFIRI (n=270) n (%) 1111 (41) 59 (22) 137 (51) 133 (49) n 67 (25) 203 (75) 8 (3) 72 (27) 189 (70) 1 (0.4) 143 (53) 127 (47) after first line 63 (23) 207 (77) 137 (51) 133 (49)	VEGF-D High ≥115 pg/mL RAM+ FOLFIRI (n=270) n (%) Placebo+ FOLFIRI (n=266) n (%) 111 (41) 109 (41) 59 (22) 53 (20) 137 (51) 162 (61) 133 (49) 104 (39) 103 (75) 61 (23) 203 (75) 205 (77) 8 (3) 9 (3) 72 (27) 70 (26) 189 (70) 185 (70) 1 (0.4) 2 (1) 143 (53) 126 (47) 127 (47) 140 (53) 127 (47) 140 (53) 207 (77) 195 (73) 137 (51) 119 (45) 133 (49) 147 (55)	VEGF-D High \geq 115 pg/mLVEGF-D Low RAM+ FOLFIRI (n=270) n (%)FOLFIRI (n=266) n (%)RAM+ FOLFIRI (n=176) n (%)1111 (41)109 (41)64 (36)59 (22)53 (20)31 (18)111 (41)109 (41)64 (36)59 (22)53 (20)31 (18)137 (51)162 (61)100 (57)133 (49)104 (39)76 (43)n67 (25)61 (23)33 (19)203 (75)205 (77)143 (81)8 (3)9 (3)6 (3)72 (27)70 (26)38 (22)189 (70)185 (70)132 (75)1 (0.4)2 (1)143 (53)126 (47)88 (50)127 (47)140 (53)87 (49)1 (1)after first line63 (23)71 (27)43 (24)207 (77)195 (73)133 (76)137 (51)119 (45)89 (51)133 (49)147 (55)87 (49)	VEGF-D High \geq 115 pg/mLVEGF-D Low <115 pg/mLRAM+ FOLFIRI (n=270) n (%)FOLFIRI (n=266) n (%)RAM+ FOLFIRI (n=176) n (%)Placebo+ FOLFIRI (n=172) n (%)111 (41)109 (41)64 (36)70 (41)59 (22)53 (20)31 (18)42 (24)137 (51)162 (61)100 (57)110 (64)133 (49)104 (39)76 (43)62 (36)n $67 (25)$ 61 (23)33 (19)28 (16)203 (75)205 (77)143 (81)144 (84) $72 (27)$ 70 (26)38 (22)30 (17)189 (70)185 (70)132 (75)134 (78)1 (0.4)2 (1)3 (2)143 (53)126 (47)88 (50)93 (54)127 (47)140 (53)87 (49)79 (46)1 (1)after first line1 (33 (76)136 (79)137 (51)119 (45)89 (51)86 (50)133 (49)147 (55)87 (49)86 (50)	

- populations)

Der Deutsche Krebskongress; Berlin, Germany; February 21-24, 2018

 At the initial plasma ME subset analyses (RAM, n=153; placebo, n=146), VEGF-D showed a strong signal associating higher levels with greater OS and PFS improvement in the RAM arm

To test the relationship of VEGF-D levels with efficacy outcomes seen in the dataset from the ME patients, a VEGF-D level of 115 pg/mL was prespecified (based on multiple analyses from the ME set) as the cutoff value for high and low subgroup analysis of the independent MC population and the full translational research (TR) population (ME+MC

• Results from the MC population independently confirmed the ability of the prespecified cutoff from the ME dataset to predict RAM efficacy (interaction p-values .0107 and .0013 for OS and PFS, respectively) The ME+MC analyses (Table 3 and Figures 1-4) show the VEGF-D relationship in the overall TR population

Figure 4. PFS by Treatment Arm with Stratification Table 3. OS and PFS Results from ME+MC Population Factors as Covariates, Low VEGF-D Expression Levels by VEGF-D Levels (<115 pg/mL), TR Population Low VEGF-D

	High VEGF-D (≥115 pg/mL)			
	RAM+	Placebo+	Placebo+	
	FOLFIRI	FOLFIRI		
	(n=270)	(n=266)		
Median OS, months	13.9	11.5		
(95% CI)	(12.5-15.6)	(10.1-12.4)	(
HR (95% CI)	0.73 (0.60-0.89)			
p-value (likelihood ratio)	.0022			
Interaction p-value		.00	005	
Median PFS, months (95% CI) HR (95% CI)	6.0 (5.6-7.0) 0.62 (0.	4.2 (4.1-4.5) 52-0.74)		
ratio)	<.0	001		
Interaction p-value		<.0	001	

Figure 1. OS by Treatment Arm with Stratification Factors as Covariates, High VEGF-D Expression Levels (≥115 pg/mL), TR Population

Figure 2. OS by Treatment Arm with Stratification Factors as Covariates, Low VEGF-D Expression Levels (<115 pg/mL), TR Population

Figure 3. PFS by Treatment Arm with Stratification Factors as Covariates, High VEGF-D Expression Levels (≥115 pg/mL), TR Population

RAM+	Placebo+		
FOLFIRI	FOLFIRI		
(n=270)	(n=266)		
13.9 (12.5-15.6)	11.5 (10.1-12.4)		
0.73 (0.60-0.89)			
.0022			

- STEPP figures were created to examine the VEGF-D predictive relationship more granularly
- The STEPP figures show point estimates for the treatment HR across a range of VEGF-D levels
- For both OS and PFS, a consistent relationship was observed
- between HR and VEGF-D values (Figures 5 and 6, respectively) The STEPP figures also demonstrate that the 115 pg/mL cutoff
- identified, based on results from the ME dataset, is well suited to data from the full TR population

Figure 5. VEGF-D OS STEPP, TR Population

Figure 6. VEGF-D PFS STEPP, TR Population

References

- 1. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
- 2. http://www.who.int/mediacentre/factsheets/fs297/en/
- 3. Van Cutsem E et al. Ann Oncol 2014;25(Suppl 3):iii1–9 4. https://seer.cancer.gov/statfacts/html/colorect.html
- 5. Spratlin JL et al. J Clin Oncol 2010;28:780-7
- . Tabernero J et al. Lancet Oncol 2015;16:499-508
- 7. Holzer TR et al. PLoS ONE 2013;8:e80292
- 8. Freidlin B and Simon R. Clin Cancer Res 2005;11:7872-8 9. Bonetti M and Gelber RD. Stat Med 2000;19:2595–609

Acknowledgements

We thank the patients, investigators, and institutions involved in this study and the members of the data monitoring committee; additionally, we thank Michelle Mynderse, PhD, of INC Research/inVentiv Health, contracted by Eli Lilly and Company for medical writing support

Table 4. TEAEs by VEGF-D Cutoff Point (115 pg/mL): Grade ≥3 3% or Higher in Either **Treatment Arm**

	Grade ≥3				
	RAM+F	RAM+FOLFIRI		FOLFIRI	
	VEGF-D Low	VEGF-D High	VEGF-D Low	VEGF-D High	
	(n=176) n (%)	(n=271) n (%)	(n=172) n (%)	(n=265) n (%)	
Any TEAE	133 (76)	219 (81)	110 (64)	160 (60)	
Diarrhea	18 (10)	33 (12)	21 (12)	22 (8)	
Neutropenia	56 (32)	115 (42)	36 (21)	73 (28)	
Fatigue	15 (9)	33 (12)	17 (10)	15 (6)	
Nausea	5 (3)	6 (2)	3 (2)	9 (3)	
Decreased appetite	3 (2)	9 (3)	3 (2)	2 (1)	
Stomatitis	10 (6)	8 (3)	5 (3)	6 (2)	
Vomiting	5 (3)	8 (3)	3 (2)	9 (3)	
Hypertension	22 (13)	28 (10)	8 (5)	4 (2)	
Abdominal pain	7 (4)	9 (3)	7 (4)	8 (3)	
Thrombocytopenia	4 (2)	9 (3)	0	3 (1)	
Anemia	2 (1)	6 (2)	6 (4)	10 (4)	
Adverse events of special interest					
Hypertension	23 (13)	29 (11)	8 (5)	4 (2)	
VTEs	10 (6)	10 (4)	4 (2)	3 (1)	
Proteinuria	6 (3)	8 (3)	0	1 (<1)	
Bleeding/hemorrhage event	3 (2)	9 (3)	4 (2)	3 (1)	
GI perforation	3 (2)	5 (2)	0	3 (1)	
Congestive heart failure	3 (2)	0	0	1 (<1)	
GI hemorrhage	2 (1)	7(3)	2 (1)	2 (1)	
Infusion-related reaction	2 (1)	2 (1)	2 (1)	0	
Renal failure	1 (1)	4 (2)	3 (2)	2 (1)	
Arterial thromboembolic events	0	3 (1)	1 (1)	4 (2)	

Abbreviations: GI, gastrointestinal; TEAE, treatment-emergent adverse event; VTEs, venous thromboembolic events

CONCLUSIONS

- Among the candidate angiogenic biomarkers analyzed, only VEGF-D showed a strong signal as a predictive biomarker
- In mCRC patients, the relationship observed between higher baseline plasma VEGF-D levels and greater efficacy was consistent for both OS and PFS
- For the 60% of patients with higher VEGF-D, the median OS benefit with RAM was 2.4 months; for the remaining 40% of patients with lower VEGF-D, the difference in median OS was 15 days, favoring placebo
- Higher levels of VEGF-D seem to be a predictive biomarker for RAM efficacy on OS and PFS in mCRC
- Findings were obtained with an assay developed and validated for exploratory research purposes only
- Development and validation of an assay appropriate for clinical decision making are currently underway; if successful, this assay will be used to confirm the relationship observed in the RAISE samples

Disclosures

This is an encore of an poster presented at the European Society for Medical Oncology (ESMO) Congress; Madrid, Spain; September 8-12, 2017. The data from this study was published in *The Annals of Oncology* 2017 mdx767.

December 7, 2017. DOI: https://doi.org/10.1093/annonc/mdx767.

Privacy Notice Regarding the Collection of Personal Information By scanning this QR code, you are consenting to have your IP address and, if you choose, email address temporarily retained in a secured omputer system and used only for counting purposes, performing file download, and sending you an email. Your information will not be shared for any other purpose, unless required by law. You will not receive any future communications from Eli Lilly and Company base on the system-retained information. Contact information at: http://www.lilly.com/Pages/contact.aspx

Sponsored by Eli Lilly and Company