Enzym macht Hirntumor gefährlich

Wenn Hirntumoren nach der Therapie zurückkehren, sind dafür meist Krebsstammzellen verantwortlich, denen die Behandlung nichts anhaben konnte. WissenschaftlerInnen des DKFZ Heidelberg fanden nun ein Enzym, das für die gefährlichen Stammzelleigenschaften des Glioblastoms verantwortlich ist.

Hohe GDP-1-Expression, schlechte Prognose

Wenn Hirntumoren nach einer Therapie zurückkehren, geht dies auf das Konto von Krebsstammzellen, denen die Behandlung nichts anhaben konnte. WissenschaftlerInnen aus dem Deutschen Krebsforschungszentrum suchten nun nach charakteristischen Proteinen, die die Hirntumor-Stammzellen auszeichnen. Dabei identifizierten sie ein Enzym, das für die gefährlichen Stammzelleigenschaften des Glioblastoms verantwortlich ist und gleichzeitig eine mögliche "Achillessehne" darstellt, an der die Zellen verwundbar sind.

Bei vielen Krebsarten wirken die Behandlungen ausschließlich auf die sich schnell teilenden Krebszellen, die die große Masse eines Tumors ausmachen. Die Stammzellen des Tumors dagegen teilen sich so gut wie nicht und sind resistent gegenüber Chemotherapie und Bestrahlung. Schlimmer noch: Durch die Behandlungen werden sie aktiviert und sind dann verantwortlich dafür, dass der Tumor zurückkehrt. Dies gilt insbesondere für das Glioblastom, den aggressivsten Vertreter unter den Hirntumoren.

"Der einzige Weg, um beim Glioblastom einen Rückfall nach der Behandlung zu verhindern, wäre eine Therapie, die gegen die Hirntumor-Stammzellen wirksam ist“, sagt Haikun Liu vom Deutschen Krebsforschungszentrum (DKFZ). "Dazu müssten wir aber molekulare Zielstrukturen kennen, die spezifisch für diese Krebsstammzellen sind – damit die Therapie keine gesunden Zellen schädigt. Doch das Problem ist, dass Hirntumor-Stammzellen und die Stammzellen des gesunden Gehirns viele molekulare Merkmale und Eigenschaften teilen.“

Auf der Suche nach geeigneten Zielstrukturen

Unter den Proteinen, die in Krebsstammzellen, nicht aber in Gehirnstammzellen gebildet werden, erschien  ein Enzym des Energiestoffwechsels als besonders interessant: Die Glycerol-3-Phosphat Dehydrogenase 1 (GPD1)-produzierenden Krebszellen teilten sich nicht und traten vor allem an der sogenannten Invasionsfront auf, wo der Tumor ins gesunde Gehirngewebe einwächst. Sehr früh, schon etwa zwei Wochen nach dem Beginn der Krebsentstehung, konnten die Forscher im wachsenden Tumor die GPD1-Produktion nachweisen.

Die ForscherInnen behandelten Mäuse mit dem Standard-Chemotherapeutikum Temozolomid und analysierten die Tumoren zu verschiedenen Zeitpunkten nach Ende der Therapie: Während der Behandlung zeigten die GPD1-produzierenden Zellen keine Teilungsaktivität und verharrten in dem für Stammzellen charakteristischen Schlafzustand. Doch erwachten sie mit dem Beginn des Rückfalls aus ihrem Schlummer – ein starkes Indiz dafür, dass sie für die Wiederkehr des Tumors verantwortlich sind. Wurde die GPD1 mit genetischen Methoden in den Tumorstammzellen der Mäuse ausgeschaltet, so überlebten die Tiere länger.

Hohe GPD-1-Spiegel – ungünstige Prognose 

Ist die GPD1 auch in Glioblastomen des Menschen für die gefährlichen Stammzell-Eigenschaften verantwortlich? Eine Datenbank-Analyse von Tumorgenomen ergab, dass bei Glioblastom-Patienten eine hohe GPD1-Produktion mit ungünstiger Prognose korreliert. Auch bei anderen Krebsarten, etwa beim Nierenzellkarzinom, sind hohe GPD1-Spiegel mit einem ungünstigen Verlauf verbunden.

Wie schon an den Mäusen beobachtet, fanden sich auch in Gewebeschnitten von Hirntumoren des Menschen die GPD1-produzierenden Zellen vorwiegend an der Invasionsfront. Aus Glioblastomen gezüchtete Zelllinien, deren GPD-1 die Forscher ausgeschaltet hatten, wuchsen in der Kulturschale nicht mehr zu "Minitumoren“ heran – und verloren damit eine typische Stammzell-Fähigkeit.

"Diese Arbeit ist ein erster Schritt, um Proteinmarker zu identifizieren, die schlafende Hirntumorstammzellen charakterisieren, und um deren Rolle für die Tumorbiologie zu untersuchen“, sagte Liu. "Dabei haben wir so viele interessante Eigenschaften der GPD1 entdeckt, dass wir das Enzym nun als Zielstruktur möglicher Therapien weitererforschen werden.“