esanum is an online network for approved doctors

esanum is the medical platform on the Internet. Here, doctors have the opportunity to get in touch with a multitude of colleagues and to share interdisciplinary experiences. Discussions include both cases and observations from practice, as well as news and developments from everyday medical practice.

esanum ist ein Online-Netzwerk für approbierte Ärzte

esanum ist die Ärzteplattform im Internet. Hier haben Ärzte die Möglichkeit, mit einer Vielzahl von Kollegen in Kontakt zu treten und interdisziplinär Erfahrungen auszutauschen. Diskussionen umfassen sowohl Fälle und Beobachtungen aus der Praxis, als auch Neuigkeiten und Entwicklungen aus dem medizinischen Alltag.

Esanum est un réseau en ligne pour les médecins agréés

esanum est un réseau social pour les médecins. Rejoignez la communauté et partagez votre expérience avec vos confrères. Actualités santé, comptes-rendus d'études scientifiques et congrès médicaux : retrouvez toute l'actualité de votre spécialité médicale sur esanum.

Wichtiges Molekül für Botenstoffausschüttung in Synapsen identifiziert

Wissenschaftler vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie und der Freien Universität Berlin lösen ein großes Rätsel der Neurologie: Sie konnten den Freisetzungsort von Botenstoffen innerhalb von Synapsen einem bestimmten Protein zuordnen.

Protein Unc13A bestimmt Ort der Freisetzung von Botenstoffen aus Vesikeln

Wissenschaftler vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie und der Freien Universität Berlin lösen ein großes Rätsel der Neurologie: Sie konnten den Freisetzungsort von Botenstoffen innerhalb von Synapsen einem bestimmten Protein zuordnen.

Damit Nervenzellen miteinander kommunizieren können, werden an ihren Synapsen chemische Botenstoffe freigesetzt. Dies geschieht durch synaptische Vesikel, die dabei mit der Zellmembran verschmelzen. Dieser Vorgang findet nicht irgendwo statt, sondern an ganz bestimmten Stellen innerhalb der Synapse. Wissenschaftler vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) und der Freien Universität Berlin (FU) haben nun das Molekül identifiziert, das diese Freisetzungsorte definiert und damit ein großes Rätsel in den Neurowissenschaften gelöst. Die Ergebnisse tragen zu einem besseren Verständnis der synaptischen Transmission bei, sind aber auch Grundlage, um pathologische Vorgänge im Nervensystem besser erklären zu können. Jetzt ist die wegweisende Arbeit im  Fachmagazin Neuron erschienen.

Unser Nervensystem ist ständig gefordert, elektrische Signale in chemische Informationen um- und wieder zurückzuwandeln. Erreicht ein elektrisches Signal die Synapse, wird ein Kalziumeinstrom durch spannungsabhängige Kalziumkanäle ausgelöst, der wiederum dazu führt, dass synaptische Vesikel die in ihnen gespeicherten chemischen Botenstoffe (Neurotransmitter) innerhalb weniger Millisekunden freisetzen. Die Botenstoffe werden dann von der benachbarten Nervenzelle wiederum in ein elektrisches Signal zurückgewandelt. Wissenschaftler nennen das "synaptische Transmission" – ein Vorgang, der elementar für Lebewesen ist.

Bekannt ist, dass jede Synapse über eine Vielzahl solcher Vesikel verfügt. Die Botenstoffausschüttung jedoch nur an wenigen, ganz bestimmten Stellen erfolgt. Ähnlich wie bei den Startblöcken auf einer Aschenbahn, scheint die räumliche Anordnung der Freisetzungsorte zum Kalziumkanal elementar für die synaptische Transmission zu sein: Hier wie dort entscheidet der richtige Abstand darüber, wie schnell das Ziel erreicht werden kann – in diesem Fall, wie schnell das elektrische Signal in chemische Information umgewandelt wird. Bislang war allerdings unklar, welches Molekül diese Freisetzungsorte (engl. 'release sites') festlegt.

Raum und Zeit sind aneinander gekoppelt

Wissenschaftler konnten das fragliche Molekül nun identifizieren: Es handelt sich um das Protein Unc13A, das seinerseits kein Unbekannter ist. Schon in 1970er Jahren wurde es entdeckt, da Fehlfunktionen dieses Proteins bei Fadenwürmen zu unkoordinierten Bewegungen führten, was die Namensgebung erklärt und schon damals auf eine wichtige Funktion des Moleküls schließen ließ. "Wir wussten, dass das Molekül eine wichtige Rolle beim Informationstransfer spielt, denn wenn es fehlt, findet keinerlei synaptische Transmission mehr statt", erläutert Neurowissenschaftler Dr. Alexander Walter vom FMP. "Wir wussten aber nicht, dass es auch den Platz für die Freisetzung der Botenstoffe aus Vesikeln definiert."

Rund vier Jahre haben die Forscher gebraucht, um das Molekül durch die Kombination verschiedenster Messungen und optischer Methoden dingfest zu machen. Wurde das Protein innerhalb der Synapse anders platziert, verschoben sich auch die Freisetzungsorte und somit ihr Abstand zum Kalziumkanal. Dadurch änderte sich auch der zeitliche Verlauf der synaptischen Transmission, ähnlich dem Verschieben von Startblöcken zur Ziellinie. Je nach Abstand dauerte der Informationstransfer kürzer oder länger. Damit bewahrheitete sich die Vermutung, dass die räumliche Anordnung der Freisetzungsorte fest an den zeitlichen Ablauf des Informationstransfers zwischen Nervenzellen gekoppelt ist. "In unserer Studie konnten wir zeigen, dass die exakte Positionierung nötig ist, damit die synaptische Transmission mit einer bestimmten Geschwindigkeit erfolgen kann", betont Walter.

Bedeutung über die Grundlagenforschung hinaus

Der Fund hat wesentlich zum Verständnis beigetragen, wie die synaptische Transmission organisiert ist und eine große Lücke in den Neurowissenschaften geschlossen. Die Untersuchungen wurden an der Fruchtfliege durchgeführt, jedoch lässt sich das Prinzip der definierten Freisetzungsorte durch das essentielle Vorhandensein von Unc13-Proteinen auf höhere Organsimen bis zum Menschen mit hoher Wahrscheinlichkeit speziesübergreifend übertragen.

"Erst wenn wir die Grundlagen synaptischer Transmission kennen, sind wir in der Lage, auch pathologische Veränderungen zu verstehen, ähnlich der Tatsache, dass man ein Auto erst reparieren kann, wenn man dessen Funktionsweise verstanden hat", meint Neurowissenschaftler Walter. Darum habe die Identifizierung des Moleküls auch Bedeutung über die Grundlagenforschung hinaus und könnte eines Tages Patienten mit neurologischen Erkrankungen zu Gute kommen.