Totipotenz: Warum manche Zellen alles können

Eine neue Studie im Fachmagazin "Nature Genetics" beschreibt eine Gruppe von embryonalen Stammzellen, die sich zu totipotenten Alleskönnern umprogrammieren lassen. Die Autoren vom Münchner Helmholtz Zentrum und der Ludwig-Maximilians-Universität konnten zudem den Mechanismus aufklären, wie es dazu kommt.

Embryonale Stammzellen mit Farbspiel-Trick abgetrennt

Eine neue Studie im Fachmagazin "Nature Genetics" beschreibt eine Gruppe von embryonalen Stammzellen, die sich zu totipotenten Alleskönnern umprogrammieren lassen. Die Autoren vom Münchner Helmholtz Zentrum und der Ludwig-Maximilians-Universität (LMU) konnten zudem den Mechanismus aufklären, wie es dazu kommt.

Der Begriff Totipotenz (von lateinisch totus "ganz" und potentia "Vermögen, Kraft") beschreibt die Fähigkeit von Zellen, sich in alle anderen Zelltypen des Körpers zu entwickeln. Das beste Beispiel für so einen Alleskönner ist die befruchtete Eizelle, aus der sich alle weiteren Zellen des entstehenden Lebens bilden. Aber auch noch nach der ersten Teilung im 2-Zell-Stadium bleibt diese Totipotenz erhalten. Die Stammzellen des späteren Embryos hingegen sind lediglich pluripotent, können also viele Zelltypen bilden, aber eben nicht alle.

Hält man allerdings solche embryonalen Stammzellen in Kultur, so entwickelt rund ein Prozent davon eine Totipotenz, wie sie dem 2-Zell-Stadium entspricht. Im englischen werden diese Zellen 2CLCs (2-cell-like cells) genannt. Herauszufinden was hinter diesem Phänomen steckt, war die Motivation des Teams um Prof. Dr. Maria Elena Torres-Padilla. Sie ist Direktorin des Instituts für Epigenetik und Stammzellen (IES) am Helmholtz Zentrum München und Professorin für Stammzellbiologie an der LMU.

Dazu wollten die Forscher zunächst die aktiven Gene zwischen embryonalen Stammzellen und 2CLCs vergleichen und benutzten dafür einen Trick: Wenn Zellen im 2CLC-Stadium ankommen, wird sehr oft das Gen MERVL abgelesen. Die Forscher fusionierten nun das MERVL-Gen mit dem Gen für ein grün leuchtendes Protein. Anschließend konnten sie die grün leuchtenden 2CL-Zellen von den nicht leuchtenden "normalen" embryonalen Stammzellen abtrennen.

Der anschließende Vergleich der beiden Gruppen ergab, dass vor allem das Gen Zscan4 während des Übergangs zur Totipotenz aktiv war. Wie beim Trick zuvor, fusionierte das Team das Zscan4-Gen mit dem Gen für ein rotes Protein. Beobachteten sie die Zellen unter dem Mikroskop, färbten sich die betreffenden Zellen zunächst rot und dann grün. "Diese Beobachtungen zeigten uns, dass Zellen offensichtlich durch eine Übergangsphase müssen, bevor sie im 2CLC-Stadium ankommen", erklärt Torres-Padilla. "Als nächstes wollten wir den treibenden Mechanismus dahinter aufdecken." 

Dazu wählte das Team einen sogenannten siRNA Screen: Mit dieser Methode ist es möglich, mehr als 1.000 Gene gezielt zu beeinträchtigen, um zu sehen wie sich das auf die Entwicklung von 2CL-Zellen auswirkt. "Die Ergebnisse waren außergewöhnlich", beschreibt IES-Wissenschaftler Dr. Xavier Gaume, gemeinsam mit Diego Rodriguez-Terrones, Erstautor der Studie. "Wir konnten zahlreiche Proteine identifizieren, die die Entstehung von 2CLCs regulieren." Besonders häufig entstanden 2CLCs, je seltener der Proteinkomplex Ep400/Tip60 vorlag.